The #1 Monster Quest : AI tutor AI Learning Service

Connect With Us on Social Media

Monster Quest | AI tutorMonster Quest | AI tutorMonster Quest | AI tutor

Monster Quest | AI tutor The No.1 Homework Finishing Free App

Geometry and Measurement

Vector Analysis Geometry of Curves and Surfaces - Dot Product and Cross Product

Q.01

'Find the dot product and the angle \ \\theta \ between two vectors \\( \\vec{a}=(\\sqrt{3}, 1), \\vec{b}=(-1,-\\sqrt{3}) \\).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.02

'To show the condition for points \ \\mathrm{O}, \\mathrm{A}, \\mathrm{B} \ to be collinear, demonstrate the following property:'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.03

'Let mathrmABCD \\mathrm{ABCD} be the base of a quadrangular pyramid mathrmOABCD \\mathrm{OABCD} such that overrightarrowmathrmOA+overrightarrowmathrmOC=overrightarrowmathrmOB+overrightarrowmathrmOD\\overrightarrow{\\mathrm{OA}}+\\overrightarrow{\\mathrm{OC}}=\\overrightarrow{\\mathrm{OB}}+\\overrightarrow{\\mathrm{OD}}. For four nonzero real numbers p,q,r,s p, q, r, s , let points mathrmP,mathrmQ,mathrmR,mathrmS \\mathrm{P}, \\mathrm{Q}, \\mathrm{R}, \\mathrm{S} be defined by overrightarrowmathrmOP=poverrightarrowmathrmOA \\overrightarrow{\\mathrm{OP}}=p \\overrightarrow{\\mathrm{OA}} , overrightarrowmathrmOQ=qoverrightarrowmathrmOB \\overrightarrow{\\mathrm{OQ}}=q \\overrightarrow{\\mathrm{OB}} , overrightarrowmathrmOR=roverrightarrowmathrmOC \\overrightarrow{\\mathrm{OR}}=r \\overrightarrow{\\mathrm{OC}} , overrightarrowmathrmOS=soverrightarrowmathrmOD \\overrightarrow{\\mathrm{OS}}=s \\overrightarrow{\\mathrm{OD}} . Show that if the four points mathrmP,mathrmQ,mathrmR,mathrmS \\mathrm{P}, \\mathrm{Q}, \\mathrm{R}, \\mathrm{S} lie on the same plane, then frac1p+frac1r=frac1q+frac1s \\frac{1}{p}+\\frac{1}{r}=\\frac{1}{q}+\\frac{1}{s} .'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.04

'In tetrahedron OABC, let L be the point dividing side AB in the ratio 1:3, M be the point dividing side OC in the ratio 3:1, N be the point dividing segment CL in the ratio 3:2, and P be the intersection of segments LM and ON. If OA=a, OB=b, OC=c, express ON and OP in terms of a, b, and c.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.05

'Vector Operations (2) \\(2 \\vec{a} + 3 \\vec{b} / / (\\vec{a} - 4 \\vec{b}) , \\vec{a} \\neq \\overrightarrow{0}, \\vec{b} \\neq \\overrightarrow{0} \\) implies that \\\vec{a} / / \\vec{b}\.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.06

'Vectors a and b on the coordinate plane are not parallel. Let a and b be position vectors corresponding to points A and B, respectively. Also, for positive real numbers x and y, let x a and y b be position vectors corresponding to points P and Q. When line segment PQ divides line segment AB into the ratio 2:1, find the minimum value of xy. All position vectors are considered with respect to the origin O.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.07

'Vector equation of a line perpendicular to vector n (which is not equal to zero) and passing through point A(vector a) is n·(p-a)=0'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.08

'Definition of Cross Product'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.09

'Definition of dot product, Dot product and components \ \\vec{a} \\neq \\overrightarrow{0}, \\vec{b} \\neq \\overrightarrow{0} \.\nDefinition of dot product\nLet the angle between \ \\vec{a} \ and \ \\vec{b} \ be \\( \\theta\\left(0^{\\circ} \\leqq \\theta \\leqq 180^{\\circ}\\right) \\) , then\n\\\vec{a} \\cdot \\vec{b}=|\\vec{a}||\\vec{b}| \\cos \\theta\\nDot product and components\nIf \\( \\vec{a}=\\left(a_{1}, a_{2}\\right), \\vec{b}=\\left(b_{1}, b_{2}\\right) \\), then\n\\\vec{a} \\cdot \\vec{b}=a_{1} b_{1}+a_{2} b_{2}\\nAlso, let the angle between \ \\vec{a} \ and \ \\vec{b} \ be \ \\theta \, then\n\\\cos \\theta=\\frac{\\vec{a} \\cdot \\vec{b}}{|\\vec{a}||\\vec{b}|}=\\frac{a_{1} b_{1}+a_{2} b_{2}}{\\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}} \\sqrt{b_{1}{ }^{2}+b_{2}{ }^{2}}}\'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.10

"Proof problem about uniform circular motion\nPoint P moves on a circular path with radius r centered at the origin O, starting from fixed point P₀, such that OP rotates at a rate of ω radians per second.\n(1) Find the magnitude v of P's velocity.\n(2) Show that P's velocity vector and acceleration vector are perpendicular."

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.11

'Given vectors a and b satisfying |a|=5,|b|=3,|a-2 b|=7. If the angle between a-2 b and 2 a+b is θ, find the value of cos θ.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.12

'Find the dot product and the angle theta\\theta between the two vectors veca=(2,1,2)\\vec{a}=(-2,1,2) and vecb=(1,1,0)\\vec{b}=(-1,1,0).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.13

'For two non-zero vectors a and b, if there exists only one real number t such that a + tb and a + 3tb are perpendicular, find the angle θ between a and b.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.14

'For non-zero vectors a and b, such that a+2b and a-2b are orthogonal, and |a+2b|=2|b|.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.15

'Describe the conditions for vectors a and b to be perpendicular.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.16

'There is a point \\mathrm{P} inside \\triangle \\mathrm{ABC} such that 2 \\overrightarrow{PA} + 3 \\overrightarrow{PB} + 5 \\overrightarrow{PC} = \\overrightarrow{0}. (1) Where is the point \\mathrm{P} located? (2) Find the ratio of the areas of \\triangle \\mathrm{PBC} : \\triangle \\mathrm{PCA} : \\triangle \\mathrm{PAB}.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.17

'In a square ABCD with side length 2, find the following dot products.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.18

'Prove using vectors that the equation 2(AB^2+BC^2)=AC^2+BD^2 holds in the parallelogram ABCD.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.19

'Given 4 points A(2,1,2), B(-2,2,1), C(-3,-4,2), D(a, b, 5).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.20

'Basic Example 22 Standard Example 33'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.21

'In tetrahedron OABC, let the midpoint of side OA be P, the midpoint of side BC be Q, the point dividing segment PQ in the ratio 1:2 be R, and the intersection point of line OR and plane ABC be S. If OA=vector a, OB=vector b, OC=vector c, then express OS in terms of vector a, vector b, and vector c.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.22

'Chapter 2 Vectors in Space - 39\n(1) Let P(x, y, z) and \\overrightarrow{AP}=(x-\\frac{1}{2}, y+\\frac{3}{2}, z-1)\nSince point P lies on line AB, \\overrightarrow{AP}=t\\overrightarrow{AB} for some real number t\n\\overrightarrow{AB}=(\\frac{3}{2}, \\frac{5}{2}, -4), hence\n\\[\\left(x-\\frac{1}{2}, y+\\frac{3}{2}, z-1\\right)=t\\left(\\frac{3}{2}, \\frac{5}{2}, -4\\right)\\]\nThis gives \\left(x-\\frac{1}{2}, y+\\frac{3}{2}, z-1\\right)=\\left(\\frac{3}{2} t, \\frac{5}{2} t, -4 t\\right)\nTherefore, x=\\frac{3}{2} t+\\frac{1}{2}, y=\\frac{5}{2} t-\\frac{3}{2}, z=-4 t+1\nSince point P lies in the yz plane, the x component of \\overrightarrow{OP} is 0\nThus, \\frac{3}{2} t+\\frac{1}{2}=0 gives t=-\\frac{1}{3}\nTherefore, the coordinates of point P are \\left(0, -\\frac{7}{3}, \\frac{7}{3}\\right)\n(2) From (1), \\overrightarrow{OH}=(\\frac{3}{2} t+\\frac{1}{2}, \\frac{5}{2} t-\\frac{3}{2}, -4 t+1). Since AB ⊥ OH, we have \\overrightarrow{AB} \\cdot \\overrightarrow{OH}=0\nTherefore, \\frac{3}{2}\\left(\\frac{3}{2} t+\\frac{1}{2}\\right)+\\frac{5}{2}\\left(\\frac{5}{2} t-\\frac{3}{2}\\right)-4(-4 t+1)=0\nSolving this gives t=\\frac{2}{7}\nThus, the coordinates of point H are \\left(\\frac{13}{14}, -\\frac{11}{14}, -\\frac{1}{7}\\right)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.23

'In \ \\triangle \\mathrm{OAB} \, given that \ \\mathrm{OA}=2, \\mathrm{OB}=3, \\mathrm{AB}=\\sqrt{7} \ and let the orthocenter be denoted as H. Define \ \\overrightarrow{\\mathrm{OA}}=\\vec{a} \ and \ \\overrightarrow{\\mathrm{OB}}=\\vec{b} \, then answer the following questions:'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.24

'Find the dot product and the angle theta \\theta between the vectors veca \\vec{a} and vecb \\vec{b} .(1) veca=(3,4),vecb=(7,1) \\vec{a}=(3,4), \\vec{b}=(7,1) (2) veca=(1,sqrt3),vecb=(sqrt3,1) \\vec{a}=(1, \\sqrt{3}), \\vec{b}=(-\\sqrt{3},-1) (3) veca=(sqrt2,2),vecb=(1,sqrt2) \\vec{a}=(\\sqrt{2},-2), \\vec{b}=(-1, \\sqrt{2}) (4) veca=(1,2),vecb=(6,3) \\vec{a}=(-1,2), \\vec{b}=(6,3) '

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.25

'In right triangle ABC, with vectors AB = a, AC = b, and BC = c, find the dot products a⋅b, b⋅c, and c⋅a.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.26

'Find the value of xx that makes veca=(x+2,1)\\vec{a}=(x+2,1) and vecb=(1,6)\\vec{b}=(1,-6) perpendicular.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.27

'For △OAB, let →OP=s→OA+t→OB. Find the range of point P as real numbers s, t satisfying the following conditions: (1) s+t=3 (2) 2s+3t=1, s≥0, t≥0 (3) 2s+3t≤6, s≥0, t≥0'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.28

'\\( 4 \\overrightarrow{\\mathrm{AP}} = \\frac{1}{p^{2} - p + 1}\\{(1 - p) \\overrightarrow{\\mathrm{AB}} + p \\overrightarrow{\\mathrm{AC}}\\} \\)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.29

'(1) \ \\overrightarrow{\\mathrm{AC}}=\\overrightarrow{\\mathrm{AF}}+\\overrightarrow{\\mathrm{FC}}=\\vec{b}+2 \\vec{a} \\n\ \\vec{b}=\\overrightarrow{\\mathrm{AF}} \ therefore \\( \\vec{a}=\\frac{1}{2}(\\overrightarrow{\\mathrm{AC}}-\\overrightarrow{\\mathrm{AF}}) \\)\nThus \\( \\overrightarrow{\\mathrm{AP}}=2 s \\vec{a}+(3-3 s) \\vec{b} \\)\n\\[\n\egin{array}{l}\n=2 s \\cdot \\frac{1}{2}(\\overrightarrow{\\mathrm{AC}}-\\overrightarrow{\\mathrm{AF}})+(3-3 s) \\overrightarrow{\\mathrm{AF}} \\\\\n=s \\overrightarrow{\\mathrm{AC}}+(3-4 s) \\overrightarrow{\\mathrm{AF}}\n\\end{array}\n\\]\n\nThe conditions for point P to be in the interior of \ \\triangle \\mathrm{ACF} \ are\n\\[\ns>0,3-4 s>0, s+(3-4 s)<1\n\\]\n\nTherefore, \ s>0, s<\\frac{3}{4}, s>\\frac{2}{3} \\nTherefore, the range of the real number \ s \ that we seek is \ \\frac{2}{3}<s<\\frac{3}{4} \\nDividing both sides by \ k \,\n\ \\overrightarrow{\\mathrm{AP}}=s^{\\prime} \\overrightarrow{\\mathrm{AB}}+t^{\\prime} \\overrightarrow{\\mathrm{AC}} \\n\ s^{\\prime}+t^{\\prime}=1, \\quad s^{\\prime} \\geqq 0, t^{\\prime} \\geqq 0 \\nFormulated as \ s^{\\prime}+t^{\\prime}=1, \\quad s^{\\prime} \\geqq 0, t^{\\prime} \\geqq 0 \\n\ \\overrightarrow{\\mathrm{B}^{\\prime} \\mathrm{C}^{\\prime}}=\\overrightarrow{\\mathrm{AC}^{\\prime}}-\\overrightarrow{\\mathrm{AB}^{\\prime}} \\nRefer to dot product and triangle area formula, see Example 5.\n\ \\triangle \\triangle \\mathrm{ADG} \\triangle \\triangle \\mathrm{AEF} \,\n\ \\mathrm{AD}: \\mathrm{AE}=1: 2 \ so\n\ S_{1}: S_{2}=1^{2}: 2^{2} \\n\\( \\varangle \\vec{a}=\\frac{1}{2}(\\overrightarrow{\\mathrm{AC}}-\\vec{b}) \\)\nWhile considering \ \\triangle \\mathrm{ACF} \, transform \ \\overrightarrow{\\mathrm{AP}}=\\overrightarrow{\\mathrm{AC}}+\\square \\overrightarrow{\\mathrm{AF}} \ into this form.\nThe conditions for point P to be in the interior of \ \\triangle \\mathrm{ABC} \ are\n\\n\egin{\overlineray}{l}\n\\overrightarrow{\\mathrm{AP}}=s \\overrightarrow{\\mathrm{AB}}+t \\overrightarrow{\\mathrm{AC}} \\\\\ns>0, \\quad t>0, s+t<1\n\\end{\overlineray}\n\\nConsider taking the intersection.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.30

'Exercise 5 III → Book p.78\n(\egin{array}{l}4 \\overrightarrow{\\mathrm{AP}}+3 \\overrightarrow{\\mathrm{BP}}+2 \\overrightarrow{\\mathrm{CP}}+\\overrightarrow{\\mathrm{DP}}=\\overrightarrow{0} \\text { from } \\\\4 \\overrightarrow{\\mathrm{AP}}+3(\\overrightarrow{\\mathrm{AP}}-\\overrightarrow{\\mathrm{AB}})+2(\\overrightarrow{\\mathrm{AP}}-\\overrightarrow{\\mathrm{AC}})+(\\overrightarrow{\\mathrm{AP}}-\\overrightarrow{\\mathrm{AD}})=\\overrightarrow{0} \\\\ \\text { Therefore } 10 \\overrightarrow{\\mathrm{AP}}=3 \\overrightarrow{\\mathrm{AB}}+2 \\overrightarrow{\\mathrm{AC}}+\\overrightarrow{\\mathrm{AD}} \\\\ =3 \\overrightarrow{\\mathrm{AB}}+2(\\overrightarrow{\\mathrm{AB}}+\\overrightarrow{\\mathrm{AD}})+\\overrightarrow{\\mathrm{AD}} \\\\ =5 \\overrightarrow{\\mathrm{AB}}+3 \\overrightarrow{\\mathrm{AD}} \\end{array})'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.31

'Independence and dependence one time'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.32

'Point P moves along the side OA, so it can be represented as OP = sOA (0 ≤ s ≤ 1). Also, point Q moves along the side BC, so it can be represented as OQ = (1-t)OB + tOC (0 ≤ t ≤ 1). Find the minimum value of the square of PQ at this time.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.33

'In the coordinate space with the origin as the center, let A(5,4,-2). What kind of figure does the set of points P(x, y, z) satisfying overrightarrowOP22overrightarrowOAcdotoverrightarrowOP+36=0|\\overrightarrow{OP}|^{2}-2\\overrightarrow{OA} \\cdot \\overrightarrow{OP}+36=0 represent? Also, express the equation in terms of x, y, z.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.34

'Solve the following vector problem. \ a \\overrightarrow{\\mathrm{PA}}+b \\overrightarrow{\\mathrm{PB}}+c \\overrightarrow{\\mathrm{PC}}=\\overrightarrow{0} \ leads to \\(-a \\overrightarrow{\\mathrm{AP}}+b(\\overrightarrow{\\mathrm{AB}}-\\overrightarrow{\\mathrm{AP}})+c(\\overrightarrow{\\mathrm{AC}}-\\overrightarrow{\\mathrm{AP}})=\\overrightarrow{0}\\)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.35

'Since \ \\overrightarrow{\\mathrm{AB}} \\perp \\overrightarrow{\\mathrm{PH}} \, we have \ \\overrightarrow{\\mathrm{AB}} \\cdot \\overrightarrow{\\mathrm{PH}} = 0 \, which implies \\( 2(2k-9) + 1 \\times (k-6) - 1 \\times (-k) = 0 \\). Therefore, \ k = 4 \'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.36

'Find the angle θ between vectors a and b such that a-(2/5)b is perpendicular to a+b, and a is perpendicular to a-b.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.37

'(1) Prove:'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.38

'Example 10 Inner product calculation (definition)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.39

'In tetrahedron ABCD, let M be the midpoint of edge AB and N be the midpoint of edge CD.\n(1) Does there exist a point P that satisfies the equation PA + PB = PC + PD? Provide a proof and answer.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.40

'Inner product equations in triangle shape problems'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.41

'Explain the method of calculating the dot product of vectors and perform the calculation using a specific example.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.42

'Example 18 Find the position vector of the orthocenter of a triangle\nIn triangle OAB, with OA=5, OB=6, AB=7, and orthocenter H. Let OA vector be a and OB vector be b, answer the following questions:\n1. Find the dot product a·b.\n2. Express OH vector in terms of a and b.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.43

'In tetrahedron OABC, let ⃗a=⇀OA, ⃗b=⇀OB, ⃗c=⇀OC. Let the midpoints of segments OA, OB, OC, BC, CA, AB be denoted as L, M, N, P, Q, R respectively, and let ⃗p=⇀LP, ⃗q=⇀MQ, ⃗r=⇀NR.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.44

'The vector equation of a straight line passing through point A (a vector) and perpendicular to n (not equal to the zero vector) is: n · (p - a) = 0.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.45

'Calculate the dot product of vectors and explain its geometric meaning.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.46

'Prove the 10th vector inequality'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.47

'(1) Since \ \\mathrm{AB} \\parallel \\mathrm{DE} \, therefore \ \\overrightarrow{\\mathrm{DE}}=k \\overrightarrow{\\mathrm{AB}} \. Find the real number \ k \, and determine the values of \ a \ and \ b \ when \\( \\overrightarrow{\\mathrm{AB}}=(-3,0,4) \\) and \\( \\overrightarrow{\\mathrm{DE}}=(6, a+1, b+3) \\).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.48

'Define dot product and components where \ \\vec{a} \\neq \\overrightarrow{0}, \\quad \\vec{b} \\neq \\overrightarrow{0} \.\nThe angle between \ \\vec{a} \ and \ \\vec{b} \ is denoted by \\( \\theta (0^{\\circ} \\leqq \\theta \\leqq 180^{\\circ}) \\).\nThen, the dot product of \ \\vec{a} \ and \ \\vec{b} \ is given by \\\vec{a} \\cdot \\vec{b}=|\\vec{a}||\\vec{b}| \\cos \\theta\\nFor \\( \\vec{a} = (a_1, a_2), \\vec{b} = (b_1, b_2) \\), the dot product of the vectors is \\\vec{a} \\cdot \\vec{b}=a_1 b_1 + a_2 b_2\\nAlso, the cosine of the angle \ \\theta \ is given by \\( \\cos \\theta = \\frac{\\vec{a} \\cdot \\vec{b}}{|\\vec{a}||\\vec{b}|} = \\frac{a_1 b_1 + a_2 b_2}{\\sqrt{a_1^2 + a_2^2} \\sqrt{b_1^2 + b_2^2}}\\]'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.49

'Let P(0, s, 0) and Q(t+1, t+3, -t). Calculate PQ^2 = (t+1)^2 + (t+3-s)^2 + (-t)^2 = s^2 - 2st + 3t^2 - 6s + 8t + 10 = s^2 - 2(t+3)s + 3t^2 + 8t + 10 = {s-(t+3)}^2 - (t+3)^2 + 3t^2 + 8t + 10 = (s-t-3)^2 + 2t^2 + 2t + 1 = (s-t-3)^2 + 2(t+1/2)^2 + 1/2. When s-t-3=0 and t+1/2=0, i.e. s=5/2, t=-1/2, the minimum value is 1/2. Therefore, PQ achieves a minimum value of 1/sqrt(2) when s=5/2, t=-1/2. In other words, when P(0,5/2,0), Q(1/2,5/2,1/2), the minimum value is 1/sqrt(2).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.50

'Prove that for four points O, A, B, C in space that are not on the same plane, if vector OA=a, vector OB=b, and vector OC=c, then any vector p can be uniquely expressed in the form p=s*a+t*b+u*c (where s, t, u are real numbers).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.51

'|𝛼 + t𝛽| is greater than or equal to 0, therefore, when |𝛼 + t𝛽|^2 is minimized, |𝛼 + t𝛽| is also minimized. Hence, |𝛼 + t𝛽| takes the minimum value of √26 at t=-1. Another solution is to take point O as the origin, 𝛼 = OA, and 𝛽 = OB. The point C determined by 𝛼 + t𝛽 = OC passes through point A and lies on a line parallel to OB. Therefore, for |𝛼 + t𝛽| to be minimized, (𝛼 + t𝛽) must be perpendicular to 𝛽. In this case, we have (𝛼 + t𝛽)·𝛽 = 0, which leads to solving (2 + t) * 1 + (-4 - t) * (-1) + (-3 + t) * 1 = 0, resulting in 3t + 3 = 0, hence t = -1. At this point, |𝛼 + t𝛽| = |𝛼 - 𝛽| = √(1^2 + (-3)^2 + (-4)^2) = √26. Therefore, |𝛼 + t𝛽| achieves the minimum value of √26 at t=-1.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.52

'Additional Reference\nReference: Find the cross product \\vec{u} of \\overrightarrow{\\mathrm{OA}} and \\overrightarrow{\\mathrm{OB}}\n\n\\vec{u} = (1 \\cdot 0-(-2)\\cdot 4, (-2)\\cdot 3-2 \\cdot 0, 2 \\cdot 4-1\\cdot 3) = (8, -6, 5)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.53

'1. Maximum and minimum values of dot product of vectors\n2. Vectors with trajectory, region\n3. Maximum volume of tetrahedron\n4. Treatment of vector equations\n5. Geometric figures in space (spherical surface)\n6. Limit of a point moving on the complex plane\n7. Range of existence of points on the complex plane\n8. Fusion problems of properties of complex numbers and integers\n9. Parametric representation and trajectory\n10. Fusion problems of complex plane, equations, and curves'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.54

'Example 11 | Calculation of Dot Product (Components)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.55

'(2) continuation'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.56

'In a regular tetrahedron ABCD with edge length 2, find the dot product of vector AB and vector AC.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.57

'(2) vecacdotvecb=2times(2+sqrt3)+(1)times(1+2sqrt3)=5 \\ vec{a} \\ cdot \\ vec{b} = 2 \\ times (-2+ \\ sqrt{3})+(-1) \\ times(1+2 \\ sqrt{3})=-5 \\ n \\ also veca=sqrt22+(1)2=sqrt5 | \\ vec{a}| = \\ sqrt{2^{2}+(-1)^{2}}= \\ sqrt{5} , \\ n \\ [ | \\ vec{b} | = \\ sqrt{(-2+ \\ sqrt{3})^{2}+(1+2 \\ sqrt{3})^{2}}= \\ sqrt{20}=2 \\ sqrt{5} ntherefore \\ n \\ therefore \\ cos \\ theta= \\ frac{\\ vec{a} \\ cdot \\ vec{b}}{| \\ vec{a}| | | \\ vec{b}|}= \\ frac{-5}{ \\ sqrt{5} \\ times 2 \\ sqrt{5}}=- \\ frac{1}{2} n \\ n 0 ^ { \\ circ} \\ leqq \\ theta \\ leqq 180 ^ { \\ circ} so so \\ theta=120 ^ { \\ circ} $'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.58

'Let A(r1,θ1) and B(r2,θ2) [r1 > 0, r2 > 0]. Using the law of cosines, find the distance AB between point A and point B.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.59

'How do you express that vectors a and b are equal when they have the same magnitude and direction?'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.60

'In general, the vectors in space \ \\overrightarrow{u_{1}}, \\overrightarrow{u_{2}}, \\overrightarrow{u_{3}} \ satisfy the following conditions: \\( \\overrightarrow{u_{i}} \\cdot \\overrightarrow{u_{j}}=\\left\\{\egin{array}{ll}1 & (i=j) \\\\ 0 & (i \\neq j) \\end{array}\\right. \\)'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.61

'Line segment AB and point P. When the following equation holds, what is the position of point P.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.62

'In the coordinate space with point O as the origin, what kind of figure does the set of points P(x, y, z) satisfying the following conditions represent? Also, express the equations in x, y, z:\n(1) When A(3,-6,2), point P satisfies |→OP|^{2}+2→OP⋅→OA+45=0.\n(2) When A(1,0,0), B(0,2,0), C(0,0,3), point P satisfies →AP⋅(→BP+2→CP)=0.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.63

'Question 31 | Vector Equation of a Circle\nFor the triangle OAB on the plane and any point P, the following vector equations represent a circle. What kind of circle is it?\n(1) |3 →PA+2 →PB|=5\n(2) →OP⋅(→OP-→AB)=→OA⋅→OB'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.64

'From (1), \ 2 \\overrightarrow{\\mathrm{AB}}+\\overrightarrow{\\mathrm{AC}}=3 \\overrightarrow{\\mathrm{AD}} \ so \|3 \\overrightarrow{\\mathrm{AD}}-\\overrightarrow{\\mathrm{AP}}|=a\'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.65

'For the points O(0,0,0), A(2,1,-2), B(3,4,0), find a vector perpendicular to both vector OA and vector OB with a magnitude of √5.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.66

'Show the following.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.67

'(1) What kind of shape does the vector equation |3→OA+2→OB-5→OP|=5 represent for two distinct points A, B, and any point P on the plane? (2) There are points P and triangle ABC on the plane. Find the set of points P that satisfy the condition 2→PA⋅→PB=3→PA⋅→PC.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.68

'Prove that on a plane, for four distinct points A, B, C, D, and a point O not on the line AB, where OA=a, OB=b. And if OC=3a-2b, OD=-3a+4b, then AB∥CD.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.69

'Given quadrilateral ABCD and point O, with OA = a, OB = b, OC = c, OD = d. If a + c = b + d and a · c = b · d, determine the shape of this quadrilateral.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.70

'Find the maximum value of the dot product overrightarrowOAcdotoverrightarrowOB\\overrightarrow{OA} \\cdot \\overrightarrow{OB} when point A moves on the ellipse fracx23+y2=1\\frac{x^{2}}{3}+y^{2}=1. Here, A(x, y) and B(x, y^{2}-2 y, 2 x+y^{3}), with O being the origin.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.71

'Prove the equation \ \\left|\\frac{1}{2} \\vec{a}-\\frac{1}{3} \\vec{b}\\right|^{2}+\\left|\\frac{1}{2} \\vec{a}+\\frac{1}{3} \\vec{b}\\right|^{2}=\\frac{1}{2}|\\vec{a}|^{2}+\\frac{2}{9}|\\vec{b}|^{2} \'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.72

'Utilization of orthogonal projection vectors'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.73

'Practice(2) Find the angle \ \\theta \ formed by two non-zero vectors \ \\vec{a} \ and \ \\vec{b} \ when there exists a unique real number \ t \ such that \ \\vec{a}+t \\vec{b} \ and \ \\vec{a}+3 t \\vec{b} \ are perpendicular.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.74

'Given vectors OA and OB. Find the area of triangle QBC if point Q satisfies the condition 256 vector AQ + 3 vector BQ + 2 vector CQ = vector 0.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.75

'Find a vector \\\vec{p}\ that is perpendicular to both vectors \\(\\vec{a}=(2,1,-2)\\) and \\(\\vec{b}=(3,4,0)\\) and has a magnitude of \\\sqrt{5}\.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.76

'Orthogonality and Dot Product of Vectors'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.77

'Prove that when \\( (2 \\vec{a}+3 \\vec{b}) / /(\\vec{a}-4 \\vec{b}) \\), then \ \\vec{a} / / \\vec{b} \.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.78

'The vector equation of a straight line passing through point A(𝑎) and parallel to 𝑑(≠0) is 𝑝=𝑎+𝑡𝑑. Basic knowledge 1, p.343.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.79

'In triangle OAB, let vec{a} = \\overrightarrow{OA} and vec{b} = \\overrightarrow{OB}, with |\\vec{a}|=3, |\\vec{b}|=5, and \\cos \\angle AOB = \\frac{3}{5}. Find the position vector starting from O where the angle bisector of \\angle AOB intersects the circle with center at B and radius \\sqrt{10}, using vec{a} and vec{b}.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.80

'Given line segment AB and point P. When the following equation holds, where is point P located? (2) AP-3BP+4BA=0'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.81

'Prove that when A and B are vectors with the origin as the starting point, the vector equation of the bisector of the angle formed by vectors OA=a and OB=b is given by p = t(a/|a| + b/|b|), where t is a variable.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.82

'Parallel Vectors and Dot Product'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.83

'Solve Example 20 (2) on page 54 using the given information'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.84

'Find the value of t when the angle between two vectors \\( \\vec{a} = (1, t) \\) and \\( \\vec{b} = \\left(1, \\frac{t}{3}\\right) \\) is \ 30^{\\circ} \. Assume t > 0.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.85

'(1) The condition for vecaperpvecb\\vec{a} \\perp \\vec{b} is vecacdotvecb=0\\vec{a} \\cdot \\vec{b} = 0. Here, vecacdotvecb=3timesx+2times6=3x+12\\vec{a} \\cdot \\vec{b} = 3 \\times x + 2 \\times 6 = 3x + 12. Thus, 3x+12=03x + 12 = 0. Therefore, x=4x = -4. (2) The condition for vecaperpvecb\\vec{a} \\perp \\vec{b} is vecacdotvecb=0\\vec{a} \\cdot \\vec{b} = 0. Here, vecacdotvecb=3times(1)+xtimessqrt3=sqrt3x3\\vec{a} \\cdot \\vec{b} = 3 \\times(-1) + x \\times \\sqrt{3} = \\sqrt{3}x - 3. Thus, sqrt3x3=0\\sqrt{3}x - 3 = 0. Therefore, x=sqrt3x = \\sqrt{3}.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.86

'Practice Given line segment AB and point P. When the following equation holds, where is point P located? (1) 3 vector AP + 4 vector BP = 2 vector AB'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.87

'When two vectors a, b satisfy (1) |a + b| = 4 and (2) |a - b| = 3, find the value of a·b.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.88

'On the plane, from (1), it is given that angle ACB = angle CAD and angle BFC = angle DFA. This implies the form of vectors BC // AD.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.89

'Practice showing the following in the case where \ \\vec{a}, \\vec{b} \ are non-zero space vectors, \ s, t \ are non-negative real numbers, and \ \\vec{c}=s \\vec{a}+t \\vec{b} \.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.90

'Dot product of vectors: \\( \\vec{a} = (a_1, a_2, a_3), \\vec{b} = (b_1, b_2, b_3) \\) is given by'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.91

'The vector equation of the plane alpha passing through point A(vector a) and perpendicular to the non-zero vector n is n·(p-vector a)=0 (as discussed in section 1, page 387).'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.92

'Prove the following inequalities.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.93

'Given a quadrilateral ABCD and a point O, where OA vector is a, OB vector is b, OC vector is c, and OD vector is d. If a + c = b + d and a · c = b · d, determine the shape of this quadrilateral.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.94

'Given |a| = 3, |b| = 2, |a-2b| = sqrt{17}, find the value of the real number t for which a+b and a+tb are perpendicular.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.95

'Translate the given text into multiple languages.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.96

'Find the polar equation of the straight line passing through point \\( A(a, \\alpha) \\) and perpendicular to OA.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.97

'Dot product of vectors'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.98

'Given the plane ABC determined by three points A(1,1,0), B(3,4,5), and C(1,3,6) in three-dimensional space, if there exists a point P(4,5,z) on the plane, find the value of z.'

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.99

In the right triangle ABC \mathrm{ABC} shown in the figure to the right, let \overrightarrow{\mathrm{AB}}= ec{a}, \overrightarrow{\mathrm{AC}}= ec{b}, \overrightarrow{\mathrm{BC}}= ec{c} . Find the dot products ec{a} \cdot ec{b}, ec{b} \cdot ec{c}, ec{c} \cdot ec{a} respectively. Given that | ec{a}|=|\overrightarrow{\mathrm{AB}}|=2,| ec{b}|=|\overrightarrow{\mathrm{AC}}|=2\sqrt{3},| ec{c}|=|\overrightarrow{\mathrm{BC}}|=4 , and the angle between ec{a} and ec{b} is 90 90^{\circ} .

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.00

TRAINING 19 (3) Let | ec{a}|=1,| ec{b}|=2 . Answer the following questions. (1) When ec{a} \cdot ec{b}=-1 , find the value of | ec{a}- ec{b}| . (2) When | ec{a}+ ec{b}|=1 , find the values of ec{a} \cdot ec{b} and |2 ec{a}-3 ec{b}| .

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.01

Find the dot product and the angle heta heta between the following two vectors ec{a}, ec{b} . \[ ec{a} = (1,0,-1), ec{b} = (-1,2,2) \]

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.02

Prove that the following equations hold. (1) \( 3 ec{a} \cdot(3 ec{a}-2 ec{b})=9| ec{a}|^{2}-6 ec{a} \cdot ec{b} \) (2) |4 ec{a}- ec{b}|^{2}=16| ec{a}|^{2}-8 ec{a} \cdot ec{b}+| ec{b}|^{2}

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.03

Find the dot products OAOD,OBOD \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OD}}, \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OD}} .

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.04

The dot product of vectors a \vec{a} and b \vec{b} and the angle θ \theta between them: \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \] \[ \cos \theta =\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} =\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}} \sqrt{b_{1}{ }^{2}+b_{2}{ }^{2}+b_{3}{ }^{2}}

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.05

Properties of the Dot Product Calculate the dot product of the following vectors and verify the properties of the dot product. ec{a}=\left(2, 3 ight), ec{b}=\left(4, -1 ight) Dot product is 0 Properties of the Dot Product The following properties 1 to 5 hold for the dot product of vectors. 1 ec{a} \cdot ec{a}=| ec{a}|^{2} 2 ec{a} \cdot ec{b}= ec{b} \cdot ec{a} 3 ( ec{a}+ ec{b}) \cdot ec{c}= ec{a} \cdot ec{c}+ ec{b} \cdot ec{c} 4 ec{a} \cdot( ec{b}+ ec{c})= ec{a} \cdot ec{b}+ ec{a} \cdot ec{c} 5 (k ec{a}) \cdot ec{b}= ec{a} \cdot(k ec{b})=k( ec{a} \cdot ec{b}) where k is a real number. Proof Let ec{a}=\left(a_{1}, a_{2} ight), ec{b}=\left(b_{1}, b_{2} ight), ec{c}=\left(c_{1}, c_{2} ight)

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.06

(1) From 2a3b=10 |2 \vec{a}-3 \vec{b}|=10 we have 2a3b2=100 \quad|2 \vec{a}-3 \vec{b}|^{2}=100 Therefore \( \quad(2 \vec{a}-3 \vec{b}) \cdot(2 \vec{a}-3 \vec{b})=100 \) Hence 4a212ab+9b2=100 \quad 4|\vec{a}|^{2}-12 \vec{a} \cdot \vec{b}+9|\vec{b}|^{2}=100 Given a=1,b=22 |\vec{a}|=1,|\vec{b}|=2 \sqrt{2} , we have \( \quad 4 \times 1^{2}-12 \vec{a} \cdot \vec{b}+9(2 \sqrt{2})^{2}=100 \) That is 412ab+72=100 4-12 \vec{a} \cdot \vec{b}+72=100 , hence ab=2 \vec{a} \cdot \vec{b}=-2 ! Therefore cosθ=abab=21×22=12 \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{-2}{1 \times 2 \sqrt{2}}=-\frac{1}{\sqrt{2}} Since 0θ180 0^{\circ} \leqq \theta \leqq 180^{\circ} , θ=135 \quad \theta=135^{\circ}

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.07

Let k k be a real constant. There is a point P \mathrm{P} and a triangle ABC \mathrm{ABC} on a certain plane, and the following equation is satisfied. 3PA+4PB+5PC=kBC3 \overrightarrow{\mathrm{PA}}+4 \overrightarrow{\mathrm{PB}}+5 \overrightarrow{\mathrm{PC}}=k \overrightarrow{\mathrm{BC}} (1) When point P \mathrm{P} is on the line AB \mathrm{AB} , k= k=\square . (2) When point P \mathrm{P} is inside triangle ABC \mathrm{ABC} , <k< <k<\square holds. However, assume point P \mathrm{P} is not on the perimeter of triangle ABC \mathrm{ABC} .

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.08

Find the angle heta heta formed by the dot product of the vectors ec{a} and ec{b} .\[ ec{a} = (1,0,1), ec{b} = (2,2,1) \]

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.09

Find the value of x x when the angle between the two vectors \( \vec{a}=(1,2,-1), \vec{b}=(-1, x, 0) \) is 45 45^{\circ} .

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.10

Dot product of vectors Angle formed by the dot product of vectors (space)

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.11

Find the dot product OAOB \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}} of vectors OA \overrightarrow{\mathrm{OA}} and OB \overrightarrow{\mathrm{OB}} . Take three points O,A,B \mathrm{O}, \mathrm{A}, \mathrm{B} and let the angle between OA \overrightarrow{\mathrm{OA}} and OB \overrightarrow{\mathrm{OB}} be heta heta .

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.12

Find the values of s s and t t when the two vectors \( ec{a}=(s, 3s-1, s-1)\) and \( ec{b}=(t-1, 4, t-3)\) are parallel.

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.13

Given vectors \( \vec{a}=\left(a_{1}, a_{2}, a_{3}\right), \vec{b}=\left(b_{1}, b_{2}, b_{3}\right) \) where a10,b10 a_{1} \neq 0, b_{1} \neq 0 , prove the following: a//ba1b2a2b1=a1b3a3b1=0 \vec{a} / / \vec{b} \Longleftrightarrow a_{1} b_{2}-a_{2} b_{1}=a_{1} b_{3}-a_{3} b_{1}=0

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.14

Find the value of x x when the angle between the two vectors \( ec{a}=(2,1,1) \) and \( ec{b}=(x, 1,-2) \) is 60 60^{\circ} .

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.15

The relationship between dot product and work

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.16

Prove that vectors are perpendicular using the dot product.

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.17

The condition for 13 points to be on a straight line [Collinearity Condition] [=Example 25]. When points A and B are distinct, point C is on line AB ⇔ there exists a real number k such that AC=kAB\overrightarrow{\mathrm{AC}} = k \overrightarrow{\mathrm{AB}}. When point C is on the line AB passing through distinct points A and B, AB//AC\overrightarrow{\mathrm{AB}} / / \overrightarrow{\mathrm{AC}} or AC=0\overrightarrow{\mathrm{AC}} = \overrightarrow{0}.

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.18

In a cube ABCDEFGH \mathrm{ABCD}-\mathrm{EFGH} with side length 1, find the following dot products. (1) ACHG \overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{HG}} (2) ACAF \overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AF}} (3) AFAG \overrightarrow{\mathrm{AF}} \cdot \overrightarrow{\mathrm{AG}}

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.19

Dot product of vectors Shapes and dot product of vectors (space) (1)

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.20

TRAINING Practice 1 (4) Let k k be a real constant. There is a point P \mathrm{P} and triangle ABC \mathrm{ABC} on a certain plane, and they satisfy the following equation. 3 \overrightarrow{\mathrm{PA}}+4 \overrightarrow{\mathrm{PB}}+5 \overrightarrow{\mathrm{PC}}=k \overrightarrow{\mathrm{BC}} (1) When point P \mathrm{P} is on the line AB \mathrm{AB} , k= k=\square . (2) When point P \mathrm{P} is inside triangle ABC \mathrm{ABC} , <k< <k<\square . Assume that point P \mathrm{P} is not on the edge of triangle ABC \mathrm{ABC} .

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.21

Determine the value of x x that makes the two vectors a,b \vec{a}, \vec{b} parallel. (1) \( \vec{a}=(x,-2), \vec{b}=(2,1) \) (2) \( \vec{a}=(-9, x), \vec{b}=(x,-1) \)

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.22

Find the area S of triangle OAB in the following cases. (1) When |\overrightarrow{\mathrm{OA}}|=\sqrt{2},|\overrightarrow{\mathrm{OB}}|=\sqrt{3}, \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=2

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.23

Calculate the components of the dot product of vectors (space)

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.24

(2) Since \( (\vec{a}-3 \vec{b}) \perp(2 \vec{a}+\vec{b}) \), we have \( \quad(\vec{a}-3 \vec{b}) \cdot(2 \vec{a}+\vec{b})=0 \) Therefore \( \quad \vec{a} \cdot(2 \vec{a}+\vec{b})-3 \vec{b} \cdot(2 \vec{a}+\vec{b})=0 \) Thus, 2a25ab3b2=0 \quad 2|\vec{a}|^{2}-5 \vec{a} \cdot \vec{b}-3|\vec{b}|^{2}=0 Given a=2,b=1 |\vec{a}|=2,|\vec{b}|=1 , therefore 2225ab312=0 \quad 2 \cdot 2^{2}-5 \vec{a} \cdot \vec{b}-3 \cdot 1^{2}=0 (1) Hence ab=1 \vec{a} \cdot \vec{b}=1 , therefore cosθ=abab=12×1=12 \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{1}{2 \times 1}=\frac{1}{2} p \Leftrightarrow|\vec{p}| is treated as p2 |\vec{p}|^{2} . Since 0θ180 0^{\circ} \leqq \theta \leqq 180^{\circ} , therefore θ=60 \quad \theta=60^{\circ}

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.25

Find the following dot products. (1) \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{ED}}, (2) \overrightarrow{\mathrm{AF}} \cdot \overrightarrow{\mathrm{BG}}, (3) \overrightarrow{\mathrm{BH}} \cdot \overrightarrow{\mathrm{DF}}

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.26

Therefore, let heta heta be the angle between OC \overrightarrow{\mathrm{OC}} and MN \overrightarrow{\mathrm{MN}} , then \[ \cos \theta=\frac{\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{MN}}}{|\overrightarrow{\mathrm{OC}}||\overrightarrow{\mathrm{MN}}|}=\frac{1}{2} \div\left(1 \times \frac{1}{\sqrt{2}}\right)=\frac{\sqrt{2}}{2}\] Since 0θ180 0^{\circ} \leqq \theta \leqq 180^{\circ} , θ=45 \quad \theta=45^{\circ} 〔 Let θ \theta be the angle between non-zero vectors p \vec{p} and q \vec{q} , then cosθ=pqpq \cos \theta=\frac{\vec{p} \cdot \vec{q}}{|\vec{p}||\vec{q}|} .

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.27

Please calculate the dot product of the following vectors a \vec{a} and b \vec{b} :\n\n a=OA,b=OB \vec{a} = \overrightarrow{OA}, \vec{b} = \overrightarrow{OB} , with the angle θ=60 \theta = 60^{\circ} between the vectors, and | a \vec{a} | = 5, | b \vec{b} | = 3

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.28

(1) Find the value of x x such that \( \vec{a}=(5,1) \) and \( \vec{b}=(2, x) \) are perpendicular. (2) Find the unit vector e \vec{e} that is perpendicular to \( \vec{c}=(\sqrt{3}, 1) \).

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.29

Given vectors \( ec{a}=\left(a_{1}, a_{2}, a_{3} ight) \) and \( ec{b}=\left(b_{1}, b_{2}, b_{3} ight) \) where a1eq0,b1eq0 a_{1} eq 0, b_{1} eq 0 , prove that the following holds: ec{a} / / ec{b} \Longleftrightarrow a_{1} b_{2} - a_{2} b_{1} = a_{1} b_{3} - a_{3} b_{1} = 0

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.30

Please calculate the dot product of the following two vectors: Vector \(\vec{a} = (3, 4)\) and Vector \(\vec{b} = (1, 2)\)

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.31

For the vectors shown in the figure on the right, list all pairs of vector numbers as follows. (1) Vectors with equal magnitude (2) Vectors with the same direction (3) Equal vectors (4) Opposite vectors

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.32

In the triangle riangleABC riangle \mathrm{ABC} with vertices at points \( \mathrm{A}(4, 3, -3), \mathrm{B}(3, 1, 0), \mathrm{C}(5, -2, 1) \), find the inner product BABC \overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}} and the measure of angle ABC \mathrm{ABC} denoted by heta heta .

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor

Q.33

Angle between vectors and perpendicularity condition Find the angle between the vectors ec{a}=\left(1, 0 ight), ec{b}=\left(0, 1 ight) and prove that these vectors are perpendicular. Let the angle between two non-zero vectors ec{a}=\left(a_{1}, a_{2} ight), ec{b}=\left(b_{1}, b_{2} ight) be heta heta. Then, \cos heta= rac{ ec{a} \cdot ec{b}}{| ec{a}|| ec{b}|}= rac{a_{1} b_{1}+a_{2} b_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}}} where 0heta1800^{\circ} \leqq heta \leqq 180^{\circ}

A. ...

Ask Monster Quest : AI tutor for answer!
Monster Quest | AI tutorMonster Quest | AI tutor